التأثير الكهروضوئي هو ما يحدُث عندما تنبعث الإلكترونات من مادة قامت بامتصاص إشعاع كهرومغناطيسي.

ألبرت أينشتاين هو أول من شَرَح ذلك التأثير كاملًا، وحصل على جائزة نوبل لعملِه.

ما هو التأثير الكهروضوئي؟

وِفقًا لما ذُكِر بمجلة Scientific American، يُمكن استخدام الضوء الذي له طاقة أعلى من نُقطة مُعينة لإطلاق سراح الإلكترونات، مُحررًا إياها من سطح مادة صلبة.

يصطدم كل جُسيم ضوئي (فوتون) مع إلكترون، مُستخدمًا جزء من طاقته لإزاحة الإلكترون.

بينما تتحول بقية طاقة الفوتون إلى الشُحنة السالبة الحُرّة المُسمّاة )الفوتو إلكترون – photoelectron).

أحدَث فهمنا لكيفية عمل ذلك، ثورة في الفيزياء الحديثة.

حيثُ جلبت لنا تطبيقات التأثير الكهروضوئي، (العين الكهربائية – electric eye) لفتح الأبواب، مقياس الضوء في التصوير، والنسخ الضوئي (ماكينة التصوير).

اكتشاف التأثير الكهرضوئي

كان العُلماء يُراقبون ذلك التأثير قبل أينشتاين، لكنّهم كانوا مُتحيرين من سلوكه بسبب عدم فهمهم الكامل لطبيعة الضوء.

في أواخر القرن التاسع عشر، قام الفيزيائي جيمس كلارك ماكسويل في اسكتلندا وهندريك لورينتز في هولندا، بتحديد أنّ الضوء يبدو وكأنّه يتصرّف كموجة.

تم إثبات ذلك عن طريق مُشاهدة كيف أنّ موجات الضوء تُحقق تداخل، انحراف، وانتشار، كما هو الشائع لكل أنواع الموجات (بما فيها الموجات في الماء).

لكن نقاش أينشتاين عام 1905 حول أنّ الضوء يتصرّف كمجموعات من الجُسيمات، كان ثوريًا لأنّه لم يتّفق مع النظرية التقليدية للإشعاع الكهرومغناطيسي.

تم افتراض النظرية من قِبَل عُلماء آخرون قبل أينشتاين، لكنّه كان أول من وضّح بشكل كامل سبب حدوث الظاهرة وآثارها.

فعلى سبيل المثال، كان العالِم الألماني هنريك هرتز أول من شاهد التأثير الكهروضوئي عام 1887.

حيثُ اكتشف أنّه إذا قام بتسليط ضوء فوق بنفسجي على أقطاب كهربائية من المعدن، فإنّه بذلك سيُقلّل من الجُهد الكهربي اللازم لتحريك الشرارة الكهربائية خلف الأقطاب، وِفقًا لعالِم الفلك ديفيد دارلينج.

ثُم في عام 1899 بإنجلترا، وضّح الفيزيائي جوزيف جون طومسون أنّ الضوء فوق البنفسجي المُصطدِم بسطح معدني يُسبب انبعاث الإلكترونات.

بعد ذلك، ظهر أول قياس كمّي للتأثير الكهروضوئي عام 1902، مِن عمل فيليب لينارد (مُساعد سابق لهرتز).

كان من الواضح أنّ للضوء خصائص كهربائية، لكن ما كان يجري كان غير واضحًا.

وِفقًا لأينشتاين، الضوء مُكوَّن من حِزَم صغيرة سُمّيت في البداية (كميّات – Quanta) ثُم فوتونات.

يُمكن فهم سلوك الكميّات تحت التأثير الكهروضوئي من خلال تجربة تخيُلية.

تخيّل دوران كُرة زجاجية صغيرة في وعاء، ما قد يُشبه دوران إلكترون مُلازم لذرة.

فعندما يدخل الفوتون، يصدم الكُرة الزجاجية (أو الإلكترون)، مانحًا إياها طاقة كافية للهروب من الوعاء.

يُفسّر ذلك سلوك الضوء الذي يضرب السطح المعدني.

بينما وضّح أينشتاين، ثُم كاتب براءة الاختراعات في سويسرا، الظاهرة عام 1905، استغرق الأمر 16 سنة أُخرى ليحصل على جائزة نوبل على عمله.

لم يأتي ذلك بعد إثبات الفيزيائي الأمريكي روبرت ميليكان للعمل فقط، بل أيضًا بعد إيجاده علاقة بين واحد من ثوابت أينشتاين وثابت بلانك.

حيثُ يشرح الثابت كيف تتصرف الجُسيمات والموجات في العالم الذرّي.

بعدها بمُدّة قريبة، أُجريت دراسات نظريّة على التأثير الكهروضوئي عام 1922 من قِبل آرثر كومبتون (الشخص الذي أظهر أن الأشعة السينية يُمكن مُعاملتها كفوتونات وحاز على جائزة نوبل عام 1927)، كذلك رالف هُوارد فولر (الذي نظر في العلاقة بين درجات الحرارة للمعدن والتيارات الكهروضوئية).

تطبيقات التأثير الكهرضوئي العملية

بينما يبدو وصف التأثير الكهروضوئي نظريًا، هُناك العديد من التطبيقات العمليّة حول عمله.

تُوضّح موسوعة بريتانيكا بعضًا منها:
تُستخدم الخليّات الكهروضوئية بالأساس في الكشف عن الضوء باستخدام أنبوبة فارغة بها كاثود (قطب سالب) ليبعث إلكترونات، وأنود (قطب موجب) ليجمع التيار الناتج.

اليوم، تطوّرت تلك الأنابيب الضوئية إلى وصلات ثنائية (ديود – Diode) ضوئية مصنوعة من أشباه موصّلات والتي تُستخدم في تطبيقات مثل الخلايا الشمسيّة والألياف البصرية في الاتصالات.

الأنابيب المُضخِّمة للضوء مُختلفة عن الأنبوبة الضوئية، لكنّها تحتوي على عدّة شرائح معدنيّة تُسمّى (دينود – Dynodes).

فتتحرّر الإلكترونات عندما تضرب الكاثود، ثُم تسقط الإلكترونات على الدينود الأول مُحرِّرةً إلكترونات أكثر والتي تسقط على الدينود الثاني، ثُم على الثالث، الرابع، وما إلى ذلك.

يُضخِّم كل دينود التيار؛ حيثُ بعد حوالي 10 دينودات، يكون التيار قوي كفاية ليجعل المُضخِّمات الضوئية تكشف حتى عن الفوتونات المُنفرِدة.

تُستخدم أمثلة كهذه في التحليل الطيفي (عملية تحليل الضوء إلى أطوال موجيّة مُختلفة لتعلُّم المزيد عن التركيب الكيميائي لنجم، على سبيل المثال)، والتصوير المقطعي CAT الذي يفحص الجسم.

تطبيقات أُخرى للديودات الضوئية والمُضخّمات الضوئية تتضمّن:

  • تكنولوجيا التصوير، بما فيها أنابيب الكاميرا التليفزيونية (القديمة)، أو مُكثِّفات الصورة
  •  دراسة العمليّات النووية
  • دراسة المواد كيميائيًا بناء على الإلكترونات المُنبعِثة منها
  •  تقديم معلومات نظريّة حول كيفية انتقال الإلكترونات في الذرة بين مُستويات الطاقة المُختلفة

لكن ربما التطبيق الأكثر أهميّة للتأثير الكهروضوئي هو إطلاق الثورة الكموميّة، وِفقًا لمجلّة Scientific American.

لقد قاد الفيزيائيين للتفكير في طبيعة الضوء وبِنية الذرّات بطريقة جديدة تمامًا.


  • ترجمة: بسام محمد عبد الفتاح
  • تدقيق: رؤى درخباني
  • تحرير : رغدة عاصي
  • المصدر